Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

Encryption in 2016: Small victories add up

Fahmida Y. Rashid | Jan. 3, 2017
The move from SHA-1 to SHA-2, a Congressional victory over backdoors, and the rise of encrypted communications are leading us toward a more secure world

Consumers were outraged by the surveillance programs, and anecdotal evidence indicates many have signed up for encrypted messaging apps such as WhatsApp and Signal. But for the most part, they aren't paying for secure products or changing their behaviors to make privacy a bigger part of their daily lives.

The change is coming from CSOs, vice presidents of engineering, and other technical enterprise leaders, because they're at the forefront of making security and privacy decisions for their products and services. With Tesla now digitally signing firmware for every single one of its internal components with a cryptographic key, it's easier to ask TV manufacturers or toymakers, "Why aren't you doing that?" says Janke.

Consumers are the ones who will benefit from encryption built in by default as enterprises change their mindset about the importance of encryption. 

Riding the innovation wave

Cryptography tends to go in waves, with important innovations and research from 2005 to 2006 finally coming out as practical applications. Researchers are currently looking at improving the "precision of encrpytion," instead of the current model of all or nothing, where if something is exposed, everything gets leaked. "Encrpytion can be precise like a scalpel, giving fine-grained control over the information," Waters says.

Google has looked at cryptography in its experiments with neural networks. Recently, its Google Brain team created two artificial intelligence systems that was able to create their own cryptographic algorithm in order to keep their messages a secret from a third AI instance that was trying to actively decrypt the algorithms.

The dawn of quantum computing will also spur new avenues of research. “If large-scale quantum computers are ever built, they will be able to break many of the public-key cryptosystems currently in use,” wrote the National Institute of Standards and Technology in a public notice. Once such machines become widely available, “this would seriously compromise the confidentiality and integrity of digital communications on the Internet and elsewhere."

To prepare for that eventuality, NIST is soliciting work on "new public-key cryptography standards," which will "specify one or more additional unclassified, publicly disclosed digital signature, public-key encryption, and key-establishment algorithms that are capable of protecting sensitive government information well into the foreseeable future, including after the advent of quantum computers.” The submission deadline is Nov. 30, 2017, but NIST acknowledges the work will take years to be tested and available, noting that "historically, it has taken almost two decades to deploy our modern public key cryptography infrastructure."

“Regardless of whether we can estimate the exact time of the arrival of the quantum computing era, we must begin now to prepare our information security systems to be able to resist quantum computing,” NIST said.

 

Previous Page  1  2  3  4  5  Next Page 

Sign up for Computerworld eNewsletters.