Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

What is edge computing and how it’s changing the network

Brandon Butler | Sept. 22, 2017
Edge computing is a way to streamline the flow of traffic from IoT devices and provide real-time local data analysis

Edge computing allows data produced by internet of things (IoT) devices to be processed closer to where it is created instead of sending it across long routes to data centers or clouds.

Doing this computing closer to the edge of the network lets organizations analyze important data in near real-time – a need of organizations across many industries, including manufacturing, health care, telecommunications and finance.

“In most scenarios, the presumption that everything will be in the cloud with a strong and stable fat pipe between the cloud and the edge device – that’s just not realistic,” says Helder Antunes, senior director of corporate strategic innovation at Cisco.

 

What exactly is edge computing?

Edge computing is a “mesh network of micro data centers that process or store critical data locally and push all received data to a central data center or cloud storage repository, in a footprint of less than 100 square feet,” according to research firm IDC.

It is typically referred to in IoT use cases, where edge devices would collect data – sometimes massive amounts of it – and send it all to a data center or cloud for processing. Edge computing triages the data locally so some of it is processed locally, reducing the backhaul traffic to the central repository.

Typically, this is done by the IoT devices transferring the data to a local device that includes compute, storage and network connectivity in a small form factor. Data is processed at the edge, and all or a portion of it is sent to the central processing or storage repository in a corporate data center, co-location facility or IaaS cloud.

Network World - How Edge Computing Works [diagram]

 

Why does edge computing matter? 

Edge computing deployments are ideal in a variety of circumstances. One is when IoT devices have poor connectivity and it’s not efficient for IoT devices to be constantly connected to a central cloud.

Other use cases have to do with latency-sensitive processing of information. Edge computing reduces latency because data does not have to traverse over a network to a data center or cloud for processing. This is ideal for situations where latencies of milliseconds can be untenable, such as in financial services or manufacturing.

Here’s an example of an edge computing deployment: An oil rig in the ocean that has thousands of sensors producing large amounts of data, most of which could be inconsequential; perhaps it is data that confirms systems are working properly.

That data doesn’t necessarily need to be sent over a network as soon as its produced, so instead the local edge computing system compiles the data and sends daily reports to a central data center or cloud for long-term storage. By only sending important data over the network, the edge computing system reduces the data traversing the network.

 

1  2  Next Page 

Sign up for Computerworld eNewsletters.