Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

Inside Ford's 3D Printing Lab, where thousands of parts are made

Lucas Mearian | June 5, 2014
Many of the nylon printed motor parts are used in working prototype vehicles.

DEARBORN HEIGHTS, Mich. -- Ten years ago, Ford 3D printed perhaps 4,000 prototype parts for its vehicles. Today, just one of its five 3D prototyping centers churns out more than 20,000 parts annually.

The reason for the explosion in 3D printed (or additive manufacturing) of vehicle parts is two-fold: As consumer 3D printers have grown in popularity, printer makers have been infused with fresh revenue, which has been used to improve industrial machines and processes. And secondly, manufacturers have become proficient at creating prototype parts, so much so that the work can be done in hours instead of the four to six weeks needed with traditional machine tooling processes.

And time is money.

Sand printing
Ford technologist Leron Jones pulls sand molds from a block after a printing. Jones vacuums the excess sand away from the molds (on top). Sand molds for making metal prototype parts used to take up to 10 weeks. Today, it can take about a week to produce hundreds of molds on a single machine.

"Companies like 3D Systems and Stratasys are spending huge amounts of money on development. So not only are machines and materials getting better, but the process is getting faster and it's helping drive the overall cost down," said Harold Sears, a technical specialist in additive manufacturing technology for Ford.

In fact, without 3D printing, the Ford Motor Co. simply would not be able to meet its new model vehicle build deadlines, according to Sears. The company is today dependent on 3D printing to invent new vehicle parts.

Stereo lithography (SLA) 3D printers
A row of stereo lithography (SLA) 3D printers at Ford's Dearborn Heights facility. SLA printers use a laser to draw out a pattern in a photo-reactive resin. As the laser strikes the resin, it hardens it. SLA printers offer the finest resolution for 3D printed parts.

"Everybody wants to know how much 3D printing has saved in dollars, but when you're talking prototypes, it's time," Sears said. "What would bringing a product to market a month early do for you? That's millions of dollars. It's not something that's easily measured."

Before 3D rapid prototyping, manufacturers had to send blueprints to a machine shop, which could take weeks to produce a part. Once the part was delivered, it would often have to be modified, which would require successive models for the machine shop. Today, engineers use CAD software to draw parts, which are then downloaded to 3D printers that can turn them out in hours. If modifications are needed, they're made on the CAD drawing and simply reprinted until they're correct. Nothing needs to go offsite.

 

1  2  Next Page 

Sign up for Computerworld eNewsletters.