Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

From M2M to IoT: Old industries have to learn new tricks

Stephen Lawson | Dec. 19, 2014
The Internet of Things may be a new idea, but machines talking to other machines is not.

But the automaker also relied heavily on ball bearings used in the miles of conveyor belts around the factory, which could fail due to wear or overheating and bring the whole assembly line to a halt. When smaller, less expensive sensors became available, those ball bearings could be instrumented to regularly report their condition so the company knew when to replace them.

Once data is collected, companies now have more flexible tools to analyze it and combine it with other sources. Where companies previously had to make the data from devices match a proprietary application's format, now they can apply open APIs (application programming interfaces) to take advantage of more generalized platforms.

Fragmented, industry-specific standards have given way to more open technologies that are widely used, such as the MQTT (Message Queuing Telemetry Transport) protocol for ingesting IoT data, and SAP Hana and Hadoop clusters for analytics. Hana, for example, gives users a way to bring IoT data into a company's ERP (enterprise resource planning) platform. Physical gateways, such as those made by Intel and Cisco, may translate between the legacy systems and newer protocols.

Cloud-based analytics can open up new possibilities for connected machines. For example, Daikin Applied, a maker of HVAC (heating, ventilation and air conditioning) systems, equips its big rooftop units with numerous sensors, according to Sarig from Wind River. In the past, technicians periodically went up on the roof and used thumb drives to collect historical data stored in the HVAC unit.

Using a gateway developed by Intel, Daikin linked those sensors to the Internet. Now, owners of the HVAC systems can continuously send the sensor data to the cloud, where it combines that with weather forecasts and information about demand-based local electricity rates. A Daikin-developed algorithm can analyze those streams of data and tell the system when to cool off a building ahead of time so peak rates can be avoided, Sarig said.

Broader and faster networks have also expanded the possibilities. For example, in the past, a company that monitors oil and gas infrastructure relied on pipeline sensors that could only use the signalling channels of cellular networks, according to Kore Wireless Group, a longtime M2M services company. That channel, which is also used for SMS (Short Message Service), could only carry a few bytes of data at at time, so the system was limited to simple "on" and "off" messages.

As cellular networks evolved to 2G and 3G data services, the monitoring company installed smarter sensors that could detect and report how much was leaking from the pipeline, Kore CEO Alex Brisbourne said. With 4G, it could be possible to remotely switch on a video camera and view the damage, helping an operator decide what kind of crew to send in response, he said.


Previous Page  1  2  3  4  Next Page 

Sign up for Computerworld eNewsletters.