Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

Massive telescope array aims for black hole, gets gusher of data

Lucas Mearian | Aug. 19, 2015
Astronomers have turned to helium-filled hard drives to capture the petabytes of data coming from the Event Horizon Telescope

EHT's data collection technique, known as Very Long Baseline Interferometry (VLBI), cross-references recordings of the Milky Way's black hole from across the Americas, Antarctica, Hawaii and Europe, and will soon be capable of rendering a visual representation of the anomaly, according to Doeleman.

By resolving the shadow cast by the black hole against the hot gas falling inwards, the EHT will be able to test theories set forth by Albert Einstein, and for the first time visually capture an image of a black hole.

"Black holes have been theorized for many, many years," Doeleman said.

It was 100 years ago that Albert Einstein wrote his 10 "field" equations making up his theory of general relativity. German physicist and astronomer Karl Schwarzschild then provided the first exact solution to the Einstein's field equations of general relativity.

Schwarzschild's name became the namesake for the Schwarzschild radius (or gravitational radius), which describes the mass of an object that is compressed within a sphere to a singular point so that the escape velocity is equal the speed of light -- i.e., a black hole.

1280px carma panoramic cropped2
The Combined Array for Research in Millimeter-wave Astronomy (CARMA) is comprised 23 radio telescopes that are also a part of the Event Horizon Telescope array.

"Even Einstein didn't believe you could make a black hole. He thought it was a mathematical curiosity, as did many people," Doeleman said. "Recently, we've begun to understand there are supermassive black holes, like the one at the center of our galaxy, at the center of all galaxies.

"So what we're really after is we're trying to decide whether Einstein's theory of gravity can withstand the...highest gravitational tests that we know of," he continued. "Now we're at a point where we can ask, 'Was Einstein right?'

In other words, imaging black holes will help scientists understand astronomy on large scales, such as how galaxies form.

"Black holes are part of an astronomer's every day experience, as well as a physicist's and mathematician's every day experience, but no one has ever seen one," Doeleman said. "So there's this immense elephant in the room. Do they really exist and can we see one in action."


Previous Page  1  2  3 

Sign up for Computerworld eNewsletters.